Here is the latest rendition of my Expected Goals model. If you haven't read the original post you probably should read it here before continuing.The only substantial change from the previous version is that this one now includes rush shots. As it has been previously shown that rush shots just by the very fact that they are rush shots result in a higher shooting percentage. My model currently only accounts for 5-on-5 situations and includes a total of five factors:
- Adjusted Distance
- The farther a shot the lower likelihood it results in a goal
- Type of Shot
- Snap/Slap/Backhand/Wraparound/etc...
- Rebound - Yes/No?
- A rebound is defined as a shot taking place less than 4
- Score Situation
- Up a goal/down a goal/tied/etc…
- Rush Shot - Yes/No?
- Rush shots have a higher shooting percentage
Results
Same sort of graphs below as in the previous post, along with the correlations for each. The ExpGF correlation jumped slightly from 0.58 to 0.61 yet the ExpGA correlation stayed consistent at 0.60. That isn't to say adding rush shots didn't effect the model. There is definitely some difference both positive and negative on certain teams, typically within the 10 goal range.
Upcoming
I still plan on adding some aspect of regressed shooter and goaltender talent somehow into the model. I am close to releasing ExpG at the player level, hopefully within the next week. Around the time I am able to incorporate goaltender talent into the model I should also be able to update my xSV% with the shot quality aspects of this model.
Expected Goals
Here are the updated results below. Note that, dGF/dGA/dGF%, are calculated as actual minus expected. Therefore, a positive dGF means that a team scored more goals than the model predicted they would. A positive dGA means that a allowed more goals against than the model would have predicted. I will update this spreadsheet in its own tab at the top of this site too. Please let me know any questions or feedback you might have. Enjoy!